
Examining Zero-Shot Vulnerability Repair with Large 
Language Models



Research Questions

1. Can LLM generate repair?
2. How to design prompt?
3. How to deal with real-world problems?
4. How reliable is LLM-based repair?



Neural Machine Translation for Repair

Train an encoder-decoder to predict a repair

Cons:

1. Fine-tuning
2. Overfitting
3. Restricted scenarios



Framework

Regression Test

CodeQL/Sanitizer1. Hyperparameter
2. LLM type

Brief vs. Verbose

Prompt Length

CWE types



Choose CWE types

1. Important and common
2. Self-contained
3. High-level vs. Low-level



Choose LLM type

1. Closed-sourced vs. Open-sourced (Codex vs. PolyCoder)
2. Transparent dataset and training procedure vs. non-transparent (PolyCoder 

vs. gpt2-csrc)



Hyperparameter Tuning

1. Temperature

2. Top-p

Low temperature



Results



Results

2.2% of CWE-787; 29.6% of CWE-89 are fixed

Original generation:
4.4% of CWE-787; 93.6% of CWE-89



Prompt Template



Prompt Template



Results



Results

1. Results are diverse
2. Low context prompt may lead to secure but not functionally correct code
3. Overall, more robust prompt should include more details rather than fewer
4. Codex is better



Real-world Repair



Challenges

1. long program with mutifile files vs. short context window (Sol: Localize)
2. Merge LLM-based repair into source codes (Sol: Augment prompt and find 

overlap)



Results

1. The ensemble of LLMs is comparable to SOTA (questionable)
2. Memorization helps



Results



Reliability

1. regression tests for a project are weak proxies for the correctness of the 
program

2. A pass guarantees that the failure case is repaired, however does not 
guarantee that the vulnerability is repaired

3. Complex real-world problems (dependency, multiple-files …)


